85 research outputs found

    Analysis of the expression and modulation of selected immune-related gene transcripts in the DLEC cell line from European sea bass (Dicentrarchus labrax)

    Get PDF
    Cell lines have been established from different fish species especially for virus isolation and for studying cell-pathogen interactions, and therefore are of interest in aquaculture. In this paper, we have investigated the presence and the regulation of some immune genes in the DLEC (Dicentrarchus labrax embryonic cells) cell line from European sea bass (Dicentrarchus labrax L.) to preliminary elucidate their action. The basal expression of the selected genes (interleukin- 1β (IL-1β), cyclooxygenase-2 (COX-2), transforming growth factor-β (TGF-β), CD8-α, major histocompatibility complex II-β (MHC II-β), interferon (IFN) and Mx protein (Mx)) have been investigated and, successively, their modulation have been studied both after stimulation with different mitogen agents and after a transfection with a sequence codifying for the coat protein of a fish nervous necrosis virus (NNV). The results have evidenced that the inflammatory molecules (IL-1β, COX-2, TGF-β), constitutively expressed by the DLEC cell line, are not up-regulated by the stimulation with lipopolysaccharide (LPS) from E. coli, whether the expression of the T-cell marker transcripts (CD8-α, MHC II-β) is influenced by the action of a lectin from Phaseolus vulgaris (PHA-L). Finally, the expression of the coat NNV protein in the DLEC cell line, after the transfection, led to an high up-regulation of IFN and Mx gene transcripts. These data suggest that the DLEC cell line recognize specific pathogen-associated molecular patterns (PAMPs) and, therefore, could be useful for studying T-cell pathways and viral responses in sea bass avoiding the use of live test animals

    Analysis of the expression and modulation of selected immune-related gene transcripts in the DLEC cell line from European sea bass (Dicentrarchus labrax)

    Get PDF
    Cell lines have been established from different fish species especially for virus isolation and for studying cell-pathogen interactions, and therefore are of interest in aquaculture. In this paper, we have investigated the presence and the regulation of some immune genes in the DLEC (Dicentrarchus labrax embryonic cells) cell line from European sea bass (Dicentrarchus labrax L.) to preliminary elucidate their action. The basal expression of the selected genes (interleukin- 1β (IL-1β), cyclooxygenase-2 (COX-2), transforming growth factor-β (TGF-β), CD8-α, major histocompatibility complex II-β (MHC II-β), interferon (IFN) and Mx protein (Mx)) have been investigated and, successively, their modulation have been studied both after stimulation with different mitogen agents and after a transfection with a sequence codifying for the coat protein of a fish nervous necrosis virus (NNV). The results have evidenced that the inflammatory molecules (IL-1β, COX-2, TGF-β), constitutively expressed by the DLEC cell line, are not up-regulated by the stimulation with lipopolysaccharide (LPS) from E. coli, whether the expression of the T-cell marker transcripts (CD8-α, MHC II-β) is influenced by the action of a lectin from Phaseolus vulgaris (PHA-L). Finally, the expression of the coat NNV protein in the DLEC cell line, after the transfection, led to an high up-regulation of IFN and Mx gene transcripts. These data suggest that the DLEC cell line recognize specific pathogen-associated molecular patterns (PAMPs) and, therefore, could be useful for studying T-cell pathways and viral responses in sea bass avoiding the use of live test animals

    Two Virus-Induced MicroRNAs Known Only from Teleost Fishes Are Orthologues of MicroRNAs Involved in Cell Cycle Control in Humans

    Get PDF
    MicroRNAs (miRNAs) are ~22 base pair-long non-coding RNAs which regulate gene expression in the cytoplasm of eukaryotic cells by binding to specific target regions in mRNAs to mediate transcriptional blocking or mRNA cleavage. Through their fundamental roles in cellular pathways, gene regulation mediated by miRNAs has been shown to be involved in almost all biological phenomena, including development, metabolism, cell cycle, tumor formation, and host-pathogen interactions. To address the latter in a primitive vertebrate host, we here used an array platform to analyze the miRNA response in rainbow trout (Oncorhynchus mykiss) following inoculation with the virulent fish rhabdovirus Viral hemorrhagic septicaemia virus. Two clustered miRNAs, miR-462 and miR-731 (herein referred to as miR-462 cluster), described only in teleost fishes, were found to be strongly upregulated, indicating their involvement in fish-virus interactions. We searched for homologues of the two teleost miRNAs in other vertebrate species and investigated whether findings related to ours have been reported for these homologues. Gene synteny analysis along with gene sequence conservation suggested that the teleost fish miR-462 and miR-731 had evolved from the ancestral miR-191 and miR-425 (herein called miR-191 cluster), respectively. Whereas the miR-462 cluster locus is found between two protein-coding genes (intergenic) in teleost fish genomes, the miR-191 cluster locus is found within an intron of a protein-coding gene (intragenic) in the human genome. Interferon (IFN)-inducible and immune-related promoter elements found upstream of the teleost miR-462 cluster locus suggested roles in immune responses to viral pathogens in fish, while in humans, the miR-191 cluster functionally associated with cell cycle regulation. Stimulation of fish cell cultures with the IFN inducer poly I:C accordingly upregulated the expression of miR-462 and miR-731, while no stimulatory effect on miR-191 and miR-425 expression was observed in human cell lines. Despite high sequence conservation, evolution has thus resulted in different regulation and presumably also different functional roles of these orthologous miRNA clusters in different vertebrate lineages
    corecore